Feeds:
Posts
Comments

Posts Tagged ‘.wav’

In version two of solfa2sf: we can enter rhythm as well as pitch values, and we can control tempo and note decay

1 | 2 | 3 | 4 | 5 | Source Code

Source Code for solfa2sf

The first version of solfa2sf took a string of solfa syllables and produced a .wav sound file representing it. This was good as a start, but we want to do more! In particular, we would like to be able to give different rhythm values to the notes. I’ve posted an improved version of solfa2sf that does just this. One can use the program on the command line like this

solfa2sf foo '| q do2 . e mi2 do2 . q sol sol |'

The result is a file foo.wav:

foo

It represents a melody that starts with a quarter note C above middle C, continues with a pair of eighth notes, and ends with a pair of quarter notes.

To work with longer bits of music, it is best to write the solfa in a text editor, then compute the sound file like this.

solfa2sf -f theme.solfa

The file (theme.solfa) is this text below


tempo:120
decay:0.3
| q do2 . e mi2 do2 . q sol sol |
| do2 . e mi2 do2 . q sol sol2 |
| e fa2 mi2 re2 do2 . ti do2 ti do2 |
| re2 do2 ti la . q sol x |

The symbols || . | have no effect on the program and could be omitted. They do help the human who reads or composes tis text, however. The possible rhythm values at this moment are w (whole note), h (half note) q (quarter note), e (eighth note), and s (sixteenth note). The command tempo:120 sets the tempo, and decay:0.1 determines how fast a note trails off into silence: Increase it to make the sound more sustained, decrease it to make it more percussive.

Below is the sound file. Click the link to play it. Do you recognize the piece? I studied it as a child back in Iceland.

theme.wav

HH

Advertisements

Read Full Post »

We combine C and Python programming to transform a sequence of solfege syllables, e.g., do re mi re do, into a sound file.

1 | 2 | 3 | 4 | 5 | Source Code

In our last post we used tfork and a few unix commands to construct a sound file for an A major chord, A C# E A’. The idea was (1) to make text files representing the sounds of the individual notes using tfork, (2) glue the text files end-to-end using cat, (3) convert the resulting big text file into a .wav file using text2sf.

This works fine for short “melodies,” but it soon gets tedious — and out of hand. A better way is to write a short program that does all this for you, given a text string of solfa syllables like “do re mi re do”. This is what we do in the Python program solfa2sf. Below is the sound produced by


./solfa2sf -w foo 0.3 0.1 do re mi re do

SOUND OF FOO

SOURCE CODE for solfa2sf

In running solfa2sf, the arguments are as follows: (1) an option: -d for “dry run”, i.e., no output, -v for an output file with verbose messages, -w for wet, the opposite of dry: produces the output .wav file with few messages; (2) the file name; foo results in an output file foo.wav, (3) the note duration in seconds, (4) the decay time, (*) the solfa syllables.

If you use a small decay time, the sound is percussive, like a marimba, or even a drum. If you use a large one, it is more like an organ. Try delay times of 0.01, 0.1, and 1.0 to see what the effect is.

Python is very good with strings, lists, and dictionaries, which is what we need to parse and handle an input string like “do re mi re do’. C is the best tool for fast computation. So we use them together! As you can see from the source code, we call on the C program tfork using the Python command os.system. Like a carpenter, we use saw, chisel, hammer, etc. as needed for the task at hand.

HH

Read Full Post »